Global Influence Diagnostics in Gaussian Spatial Linear Model with Multiple Repetitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Influence Diagnostics for the Normal Linear Model with Censored Data

Methods of detecting influential observations for the normal model for censored data are proposed. These methods include one-step deletion methods, deletion of observations and the empirical influence function. Emphasis is placed on assessing the impact that a single ohservatioii has on the estimation of coefficients of the model. Functions of tlie coeflkieiits such as tlie median lifetime are ...

متن کامل

Dynamic linear model diagnostics

In time series analysis using dynamic linear models, retrospective analysis involves the calculation of filtered, or smoothed, distributions for state parameters in the past. We develop and illustrate novel results that are useful in retrospective assessment of the influence of individual observations on such distributions. In particular, new and computationally simple filtering equations are d...

متن کامل

Mixed Model Influence Diagnostics

Linear models for uncorrelated data have well established measures to gauge the influence of one or more observations on the analysis. For such models, closed-form update expressions allow efficient computations without refitting the model. When similar notions of statistical influence are applied to mixed models, things are more complicated. Removing data points affects fixed effects and covar...

متن کامل

A Non-Gaussian Spatial Generalized Linear Latent Variable Model

We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Environmental Sciences

سال: 2015

ISSN: 1878-0296

DOI: 10.1016/j.proenv.2015.05.002